If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2-29.4x=0
a = 4.9; b = -29.4; c = 0;
Δ = b2-4ac
Δ = -29.42-4·4.9·0
Δ = 864.36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29.4)-\sqrt{864.36}}{2*4.9}=\frac{29.4-\sqrt{864.36}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29.4)+\sqrt{864.36}}{2*4.9}=\frac{29.4+\sqrt{864.36}}{9.8} $
| 2x+3=4x-x(3*5) | | (40/100)=(x/60) | | 4p+5=20-2p | | X/t=11/5 | | 2x-20=3x+30 | | 10x+20(70-x)=820 | | a=4(3.14)2^2 | | 3/7x+1/14=+2-x | | 4m+5m+m=1500. | | A=3.16r2 | | (6x+10)+(8x+3)=180 | | 13x+4=35 | | 5(x-4.18)=4x | | 4(4x-2.1)=3x-8.4 | | -b/10=3 | | 3.5x+2=x(x-0.5) | | .05x+.25(34-x)=4.10 | | 2x-1/5-x-5/3=2 | | 4x+5/2=x+6 | | X+x15=20 | | 16x-4=-54 | | (x^2+15x+50)(x^2+2x+2)=0 | | 10^-x=2x+12 | | 18t+9=(+) | | 23-7c=3c+8 | | X2-6x-31=0 | | 3x+2x+4x=207 | | 4x+8x+3x=480 | | 6x+8x=336 | | 3x+6x+5x=350 | | 5w+3=19-3 | | w/10-3.1=4.2 |